Galois Theory for Bialgebroids, Depth Two and Normal Hopf Subalgebras
نویسندگان
چکیده
We reduce certain proofs in [16, 11, 12] to depth two quasibases from one side only, a minimalistic approach which leads to a characterization of Galois extensions for finite projective bialgebroids without the Frobenius extension property. We prove that a proper algebra extension is a left T -Galois extension for some right finite projective left bialgebroid over some algebra R if and only if it is a left depth two and left balanced extension. Exchanging left and right in this statement, we have a characterization of right Galois extensions for left finite projective right bialgebroids. Looking to examples of depth two, we establish that a Hopf subalgebra is normal if and only if it is a Hopf-Galois extension. We characterize finite weak Hopf-Galois extensions using an alternate Galois canonical mapping with several corollaries: that these are depth two and that surjectivity of the Galois mapping implies its bijectivity.
منابع مشابه
Semisimple Hopf Algebras and Their Depth Two Hopf Subalgebras
We prove that a depth two Hopf subalgebra K of a semisimple Hopf algebra H is normal (where the ground field k is algebraically closed of characteristic zero). This means on the one hand that a Hopf subalgebra is normal when inducing (then restricting) modules several times as opposed to one time creates no new simple constituents. This point of view was taken in the paper [13] which establishe...
متن کاملar X iv : m at h / 04 11 12 9 v 2 [ m at h . Q A ] 1 D ec 2 00 4 NORMAL HOPF SUBALGEBRAS , DEPTH TWO AND GALOIS EXTENSIONS
Let S be the left R-bialgebroid of a depth two extension with cen-tralizer R. We show that the left endomorphism ring of depth two extension, not necessarily balanced, is a left S-Galois extension of A op. Looking to examples of depth two, we establish that a Hopf subalgebra is normal if and only if it is a Hopf-Galois extension. We find a class of examples of the alternative Hopf algebroids in...
متن کاملar X iv : m at h / 04 11 12 9 v 1 [ m at h . Q A ] 6 N ov 2 00 4 NORMAL HOPF SUBALGEBRAS , DEPTH TWO AND GALOIS EXTENSIONS
Let S be the left R-bialgebroid of a depth two extension with cen-tralizer R. We show that the left endomorphism ring of depth two extension, not necessarily balanced, is a left S-Galois extension of A op. Looking to examples of depth two, we establish that a Hopf subalgebra is normal if and only if it is a Hopf-Galois extension. We also characterize weak Hopf-Galois extensions using an alterna...
متن کاملDepth Two for Infinite Index Subalgebras
In this paper, an algebra extension A |B is right depth two if its tensor-square is A-B-isomorphic to a direct summand of any (not necessarily finite) direct sum of A with itself. For example, normal subgroups of infinite groups, infinitely generated Hopf-Galois extensions and infinite dimensional algebras are depth two in this extended sense. The added generality loses some duality results obt...
متن کاملAn action-free characterization of weak Hopf-Galois extensions
We define comodule algebras and Galois extensions for actions of bialgebroids. Using just module conditions we characterize the Frobenius extensions that are Galois as depth two and right balanced extensions. As a corollary, we obtain characterizations of certain weak and ordinary Hopf-Galois extensions without reference to action in the hypothesis. 2000 AMS Subject Classification: 13B05, 16W30
متن کامل